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Charge hardness is the_dlfferencibetween the ionization and affinity energy of a single charge, Electrostatic energy associated with each electron in solutions of the Thomson Problem is collected in the shape of a Consider the very stable inert/noble elements, krypton, xenon and radon and corresponding data in the table below. Discrete charggs in 3-d|mer15|onal space are limited in the num'b?r of ways they can minimize their global energy. For The Thomson Problem is restricted to a unit sphere. Atoms vary in size (which is difficult to measure!).
n=I1-A=|UN)-UN-DI=[UN)-UN+D)| periodic table below. Several patterns and correspondences with natural atoms are observed. A high degree of symmetry exhibited by electron occupancy of energy levels is observed in the Thomson Problem: example, consider that while 2, 3, and 4 charges can all be equidistant from each other, 5 charges can never all be T the electrostati distribution above t i) tities. th it th
The principle of “hardness” is central to the hard-soft acid-base (HSAB) model in Chemistry equidistant. (Similarly, in 2-dimensions, like a sheet of paper, you cannot draw 4 equidistant points. Try it!) This O compare the electrostatic energy distrioution above to émpirical quantities, the quantities must be
' Octet Rule * For N = 36, there are 9 energy levels occupied by 4 electrons each. symmetry/geometry property is unavailable to all N > 4 charge systems. Notice that N = 5 coincides with the first normalized with respect to size. Empirical ionization energies!”? may be multiplied by empirical atomic
Charge hardness of the Thomson Problem reveals several features that may be related to atomic and nuclear structure: In Chemistry, the “Octet Rule” is a rule of thumb stating that configurations of eight valence electrons are obtained * For N = 54, there are 27 energy levels occupied by 2 electrons each. occurrence of a dumbbell-shaped p-orbital after the spherical 1s and 2s orbitals. radii® since energy is inversely proportional to size. Compare the plot below left with the plot above.
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1. Aneven/odd trend (lower even-N / higher odd-N) suggests that even-N solutions are higher in symmetry than odd- when atoms chemically combine. In most models valence electrons occupy an outermost shell. The Thomson Problem, o o FIETE 9TE 22 ENCIEY TEVED OCCHpISA by 2 Slections e There are only 5 possible highly symmetric Platonic Solids having 4, 6, 8, 12 and 20 vertices. Notice that Z= 20 is the Two similarities are observed (See Additional Reading):
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N, and that there is an energetic preference for “paired” charges — indicative of Pauli’s exclusion principle. however, has only one “shell” since all electrons reside on a unit sphere. Despite this, the Octet Rule is observed! Energy level occupanlcy symmetry may be responsible fgr t.he Periodic Law. The physical nature of the Periodic Law is largest nucleus with an equal number of r.1eutrons and'protc')ns: Larger stable nuclei have more neutrons than protqns. 1. Energies increase in a similar manner as the number of electrons in the system increases.
2. Reversal of even/odd trend between 24 < N < 29 may correspond to half-filled, low-lying 4s shells in chromium (Z = The Octet Rule is primarily applied to atoms having few electrons (N < 20). For larger atoms, the rule is less stringent. not (yet) understood! The present work may offer new insight. The symmetry/geometry property found in the Platonic Solids is not found for more than 20-charge systems. Look it up! 2. The four largest energy dips in both distributions are in similar locations.
24) and copper (Z = 29) — known shell-filling rule violations. (cf. electron configurations in periodic table below.) The 18t column on the periodic table (inert or noble gases) includes very stable elements. Pauli’s Exclusion Principle Is size important? Features in the plot exist for all sphere sizes! Is there really a size-dependent “quantum regime”? Hence, “fingerprint” is a good way to characterize the energy distribution above.
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Electron Number. N oxidation states of the first N = 20 systems are shown above the periodic table below. It may be possible to construct the entire set of quantum numbers from the classical Thomson Problem. Atomic Number, Z Electron Number, N
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2 The electrostatic potential energy associated with each electron in solutions of the Thomson Problem are plotted in the form of the periodic table. 13 14 15 16 17
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